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@1 A general framework for psychophysical modeling

We wish to propose a single, new hypothesis instead of the many specific models that are

invoked to explain a broad range of visual abilities as measured in psychophysical tests. We

will consider, in particular, hyperacuity tasks as an example for our claims.

For any given visual competence, it is tempting to conjecture a specific algorithm and a

corresponding neural circuitry. It has been often implicitly assumed that this machinery may

be hardwired in the brain. This extreme point of view, if taken seriously. may quickly lead to

absurd consequences. Consider for instance the many different hyperacuity tasks, some of which

are outlined in Figure 1. The underlying reason for the spectacular performance of human

sibjccts in th-- tsl: i1 t-at the information sampled by the photoreceptors and relayed to

the brain does contain the information necessary for precise localization of image features, since

the spacing between photoreceptors and the eye's optics satisfy (in the fovea) the constraints

of the sampling theorem [5]. More specifically, it has been shown that, in principle, spatial

mechanisms that account for grating resolution are sensitive enough to support hyperacuity-level

performance [13,4,26]. Furthermore, some of the hyperacuity tasks can be solved by detecting

-secondary" cues such as luminance difference (as in the bisection task) or orientation (as in

the detection of vertical vernier stimuli). The detailed structure of the neural circuitry that

subserves the detection of these cues, or hyperacuity perfornarice in other tasks is, however,

unknown.

Notice that the idea of a fine-grid reconstruction of the image in some layer of the cortex

[1,5] is unsatisfactory, because it still requires a homunculus looking at the reconstructed image

and applying a different routine for each specific hyperacuity task. We propose instead [161

that the brain may be able to synthesize - possibly in the cortex - appropriate modules for

specific tasks after a quick training phase in which it is exposed to examples of the task. In

most psychophysical experiments, subjects are actually shown several examples of the task

berore testing takes place. Ilyperacuity tests, in particular, require a significant training pe2riod

in order to achieve good performance (thresholds typically decrease by a factor of two to four

during the first several hundreds of stimulus presentations [24]; on the other hand, some subjects

have thresholds of 10" or less up-)n the first esting,). A bread prediction of our conjecture is

that almost any psychophysical task could be performed after suitable training, provided the

necessary information is available in the stimulus.

Synthesizing a module from examples for a specific task may be often regarded as approxi-

mating a multivariate function from sparse data. An efficient scheme for the approximation of

smooth functions was proposed recently under the name of llyperBF networks [19]. Detailed

descriptions of it, its theoretical underpinning- and its performance can be found in [19], [161,
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VERNIER CHEVRON 3-POINTS
left/right? left/right? left/right?
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BISECTION CURVATURE INTERVAL
up/down? left/right? wider/narrower?

Figure 1: Examples of six tasks in which human subjects perform at hyperacuity levels (that

is, exhibit resolutiv'- finer tha.n the snacing between individiii i -) ,iorvelpims ,Lher

variations are possible, such as, for instance a horizontal vernier.
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Figure 2- (a) A network representation of approximation by Hyper Basis Functions. (b) shows

an equivalent interpretation of (a) for the case of Gaussian radial basis functions. Gaussian

functions can be synthesized as the product of two-dimensional Gaussian receptive fields op-

erating on retinotopic maps of features. The solid circles in the image plane represent the 2D

Gaussians associated with the first radial basis function, which represents the first view of the

object. The dashed circles represent the 2D receptive fields that synthesize the Gaussian ra-

dial function associated with another view. The Gaussian receptive fields transduce positions

of features, represented implicitly as activity in a retinotopic array, and their product "com-

putes" the radial function without the need of calculating norms and exponentials explicitly.

[181, . The module is an approximation of a multivariate function in terms of basis functions

with parameter values that have to be found -i.e. "learned" - from the data - i.e. the exam-

ples. The expansion has the form
TL

f(x) = c.G(Jx - tcl11') + p(x) (1)

where the parameters t, that correspond to the centers of basis functions, and the coefficients

co, are unknown, and are in general much fewer than the data points (n < N). The norm is a

weighted norm

P. 1TTVT,,, _ t,)

where W is an unknown square matrix and the superscript T indicates the transpose. In the

simple case of diagonal W tho diagonal elements wi assign a specific weight to each input
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coordinate, determining in fact the units of measure and the importance of each feature [19].
Equation 1 can be implemented by the network of Figure 2. The parameters c, t, W are searched

for during learning by minimizing the error functional defined as

N

H[f'J = Hctw =
:=l

where

n
- y. - f'x) = - Z - t, 1 ,).

CV=1

Iterative methods of the gradient descent type can be used for the minimization of H. An
even simpler method that does not require calculation of derivatives is to look for random

changes (controlled in appropriate ways) in the parameter values that reduce the error (cf.
[14,2]). The interpretation of the network of Figure 2 is the following. The centers of the

basis functions are similar to prototypes, since they are points in the multidimensional input

space. Each unit computes a (weighted) distance of the inputs from its center and applies to

it the radial function. In the case of the Gaussian, a unit will be the most active when the

input exactly matches its center. The output of the network is a linear superposition of the
activities of all the basis functions, plus direct, weighted connections from the inputs (the linear

terms of p(x)) and from a constant input (the constant term). Notice that in the limit case of
the basis functions approximating delta functions, the system becomes equivalent to a look-up

table holding the examples.

2 Example: simulated experiments in hyperacuity

In the preceding section we have proposed that hyperacuity may consists of tasks learned by

subjects from a few examples (mostly) in the psychophysical lab, exploiting modules (in the

cortex?) that perform learning from examples, that is multivariate function approximation
from sparse data. This hypothesis, if pushed to its extreme version, may represent a rather

general framework for psychophysical modeling. To justify this proposal, we have conducted a
series of simulated psychophysical experiments, in which a HyperBF module has been trained

to perform several different hyperacuity tasks. The details of the experiments are described

below.

2.1 Simulation details

The input to the module was an array of "photoreceptors" whose activity corresponded to the

input image, blurred by the eye's optics. There were eight receptors, positioned randomly on a

4
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Figure 3: An illustration of the vernier acuity task: the subject has to tell whether the upper

bar is to the left or to the right of the lower one. Human subjects (and the HyperBF simulation)

perform this task at hyperacuity levels, that is, the minimum discernible horizontal displacement

of the two bars is much smaller than the average distance between adjacent photoreceptors. The

photoreceptor mosaic is shown superimposed on the stimulus. Each cone is shown as a circle that

represents the Gaussian spread of a point source shining at the corresponding retinal location.

This spread is due to the low-pass characteristics of the optics of the eye. Our simulation does

not require positioning the "receptors" at precisely defined locations.

loose 4 x 2 grid (see Figure 3). Each of the receptors calculated its response by integrating the

input over a region of the "retina" shaped as a Gaussian, with two space dimensions (0 = 30")

and one time dimension (or = 0.5 units). The space dimensions spanned the entire 180" x 360"

patch of the "retina", while the time dimension had an extent of ±1 unit. The 8-component

vector of receptor outputs constituted the input to the HyperBF module, which was trained to

produce an outpit of +1 for one sense of the input vernier displacement, and -1 for the other.

The performance of the module was estimated by measuring the absolute error, that is, the

distance between the actual output (which could be any number between -1 and +1; for a

proof see [6]) and the desired output (±1; see Figure 4). Without going into the details, we

point out that the absolute output error is a good analog of acuity threshold, since the two are

related monotonically.
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error

-1 0 r +1

Figure 4: The relation, hip between the performance index used in the simulations - the

absolute output error of the HyperBF module - and the acuity threshold. The probability

density of the output is shown as a distribution centered, say, at r > 0, whose tail extends

across 0 to the other half of the ±1 range of possible values. The area A under the tail of
the distribution indicates the probability of erroneous response, given the statistics reprsented

by the mean and standard deviation of error (the two parameters we have measured in the

simulations). The acuity threshold, in turn, can be related to the probability of erroneous

response through probit analysis.

2.2 Replication of the basic psychophysical findings for the vernier task

The HyperBF module coupled to the input mechanism described above successfully replicated,

after a training phase typically consisting of about 50 "examples", the following four basic

findings of the psychophysics of hyperacuity in human subjects:

* The equivalent acuity threshold was significantly lower than the spacing of the receptors

in the simulated retina ([10,22]; Figure 5).

o The threshold improved with increasing vertical separation of the two segments compris-

ing the vernier stimulus ([241; Figure 6). We note that in human subjects this improve-

ment reverts with further increase in the vertical separation: this phenomenon was also

replicated by the model.
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* The threshold deteriorated with increasing orientation difference between training and

testing trials. This deterioration was more pronounced tor shorter stimuli ((21]: Figiue 7).

e Performance remained at hyperacuity levels when the stimuli moved across the retina,

and was the highest when the velocity of the stimulus translation was the same during

training and testing ([231: Figure 8).

Importantly, the hyperacuity-level performance was independent of the precise location of

the receptors. At the same time, different quasi-random receptor mosaics yielded different

thresholds, sometimes by as much as a factor of two. A similar range of hyperacuity thresholds

is observed in human subjects, even at full acuity and perfectly normal eyes.

2.3 Comparison among line vernier, three-point bisection and dot vernier

tasks

The next experiment compared the performance of an HvperBF module in the vernier task
with that in anothet hvp-racuity task, the three-point bisection. The stimulus in the bisection

task consists of three dots, arranged in a vertical line, at an approximately even spacing. The

subject has to determine whether the middle (lot is above or below the midpoint of the segment

formed by the other two dots. The HyperBF module learned this hyperacuity task just as easily

as it did in the line vernier case.

Another experiment made a comparison between the line vernier task and a similar one in

which each of the line segments has been replaced by two dots (situated at its endpoints). The

network learned this task, as it did previously in the line vernier and the bisection cases. The

comparison between the two vernier tasks appears in Figure 9. The better performance of the

HyperBF module in the dot vernier task for small X-offsets parallels a recent surprising finding
with human subjects (M. Fahle, personal communication).

2.4 Replication of the decrease of vernier threshold with practice

A major ,haracteristic of human performance in hyperacuity tasks is the gradual and constant

improvement of the threshold, which continues, albeit at a slow rate, after ten thousand trials

([9]; see the appendix). We have replicated this phenomenon by endowing the model with a

learning mechanism that we call "incremental learning" (see also [3]) and that consists of two

phases. First, gradual improvement was obtained by letting the model perform a local random

search in the space of IIyperBF center coordinates. Second, when the model's performance on

a new input was markedly inadequate (in comparison with recent history), that input was

adjoined to the model as an additional center (prototype). In the appendix we discuss how
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Fgure 5: Mean error of the synthesized module vs. X-offset of the vernier stimulus. The

module was trained to output I for left offset and -1 for right offset. Consequently, error

of 0.1 corresponds to high performance (bars in this and other figur, denote ±1 standard

error of the mean) The values of X-offset along the abscissa are the lower bounds of an octave

range (e.g., 4 pixels means that tho offsets were uniformly distributed between 4 and 8 pixels;

in all our simulations the ,cale was 10 pixels to 30"). The three curves correspond to three

training/testing combinations. In the first one (.), the same X-offset range was used both for

training and testing. In the other two combinations (f and f). the testing range was one-half

and twice as large as the training rmage, respe, tively. Note that X-offsets which yielded high

performance (mean error smaller than 0.05) are much smaller than the photoreceptor spacing

(6", compared to about 30").

the incremental learning algorithm can be naturlly extended to work even without explicit

examples, that is without fIedback. for appropriate tasks.

The algorithm for adjusting the positions of the existing centers was as follows. For each new

input, the system made between 10 and 100 random changes in the value of a randomly chosen

coordinate of a center (the amplitude of the change was about ten percent of coordinate value).

After each change the error for that particular input was rccal'-ulated. If the new error was

lower (and, with a small probability, if the error increased), the change was inccrporated into

the system, otherwise the change was reversed (cf. [2]).' If at any stage during the simulated

'The probability of keeping a change that led to a higher error ould be decreased with time, as in the

8
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Figure 6: Mean error of the synthosized module vs. Y-offset of the vernier stimulus, by X-offset.

The four curves (orrespond to four values of X-offset. Onc- the X-offset i ; high enough to guar-

antee good performance (curve- 2, 3 and 4). increasing the Y-offset improves the performance

level, as it does in human subjects.

experiment the current input was too distant from ,Y of the existing tIvperBF centers, that

input was adjoined to the model ajs a new center (cf. learning by example acquisition in the CLF

model of object recognition ([g,,j: see also [18]). The performance of Lhe resulting algorithm that

combined adjustment of existing centers with recruitment of new centers is shown it Figure 10.

3 Conclusions

3.1 Discussion

The skeleton model described in the preceding sections is speci.-c enough to be put to a psy-

chophysical test. One possible way to do so is to test the predicion of the model iegarding

generalization of perforima-e from a well-practiced to an unfamiliar range of inputs. Consider,

for concreteness' sake, the veri:;er acuity taek. If the human vik,;i" system reli,,s o:" a memory-

based mechanism such as HvperBF interpolation to solve this problem. a drop in performance

(that is, an increase in the error rate) is expected when the range of the stimuli is suddenly

simulated annealing approach to optimization [12] (this feature, however, appeared to be unnecessary for our

pur poses).

09
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Figure 7: Mean error of the synthesized module 1's. orientation of the stimulus (shown along

the abscis-d as the lower bourd of a 1-w-,tave range. in degrees), by stimulus length. X-offset

was between 4 and 8 pixels (12" to 24"), Y-offset was I pixe (3"). The four curves coriespond

to four values of segment length, from 10 to 40 pi.els (30" to 80"). In general perfor,,,!a!: is

seen to deteriorate with increased orir itation range.

changed (e.g., if the verniers are made smaller by a factor of two or more in comparisoa with

the;- values during iraining). The same prediction holds for a change to a different hyperacuity

task (say from the top lefi stimulus in Figure 1 to the bottom right one). If regression analysis

is used to obtain an estimate of the psycl'ometric function from error rates, such a change in

the stimulus range would cause , decrease in the coefficient of determination of the regressiop,

or in related measures of the goodness of fit. Moreover, the subsequent rcoverv of performance

should be slower if no feedback is provided after the chang- (even though some learning ap-

pears to be possible even without explicit feedback: see the appendix). There are preliminary

indications that both these phenomena indeed happen in practice [9].

No such response to a change in the stimulus range should be found if the visual system

has a built-in scale invariance mechanism. Different versions of scale-invariant models of early

visual processing have been offered in the past (e.g., [20]). For our present purpose, a simple

scheme, in which invariance is achieved through simultaneous processing of the input at several

levels of resolution (corresponding to several overlapping grids of "ganglion" cells of different

size and spacing), would suffice. In such a case, the system could be pr '"ared in advanc, say,

to a reduction in the input scale (up to a certain limit). simply because the small-scale grid

10
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Figure 8: Mean error of the synthesized module vs. velocity of the stimulus during testing.

X-offset was between -t and 8 pixels (12" to 16"), Y-offset was 1 pixel (3"). The four curves

correspond to four values of velocity during training (same set of 4 values as the testing veloci-

ties). In general, performance deteriorates with increased testing velocity, but to a lesser extent

if the training velocity was relatively high as well.

would exhibit, after the reduction, a pattern of activity isomorphic to the pattern evoked by the

large-scale input in the large-scale grid (see Figure 11). Finally. we remark that the mechanism

underlying scale invariance (if any) could be probed by blurring the input to the extent that

the small-scale grids, but not the large-scale ones, are affected.

In general. we expect that the cortex performs suitable pre-processing to provide approxi-

mate invariance to certain basic transformations, without the need for explicit learning. Trans-

lation, in addition to scale, is another obvious candidate transformation for which invariance

could be built in. The bare version of our network, described here, would not generalize from

one patch of the retina to another (though this may not be fully necessary; cf. [15]). It seems

likely that translation invariance, at least up to a certain extent, should be provided by mech-

anisms preceding the learning stage (possibly related to the *'focus of attention" idea). It is

possible that preprocessing mechanisms could also provide invariance to the specific stimulus

type by computing the equivalent of "place tokens". This would enable the system to gener-

alize automatically (without the need for examples) from. say, line stimuli to. say, dot stim-

uli, but would, of course, void to some extent the significance of our model. In any case, the

input to a learning model such as the one we have outlined should not be raw photoreceptor

11
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Figure 9: Mean error of the synthesized module vs. X-offset of the vernier stimulus, by Y-offset.

Left: line vernier stimulus. Right: dot vernier stimulus. Note better performance in the latter

case for small X-offsets.

activities, as in our simulations, but rather pre-processed photoreceptor activities. The type of

preprocessing in human vision and the associated pseudo-,irvariances it suppoits are an exper-

imental question of great interest. Of course, any lack of generalization would be support for

the model. Experimental demonstration of tranfer of learning with respect to translation and

scale, would not represent in our view a major problem for the model, though it would require

a more complex preprocessing than the one we have simulated. Transfer of learning from one

type of stimulus to another (see Figure 1) would be a more serious blow to the spirit of our

model and therefore a more critical test of its validity.

3.2 Summary

The specific implication of this work is that human-like performance in different hyperacuity

tasks can be obtained by modules synthesized "on the fly" from a few examples of that task. In

view of the results reported above, we conjecture that the module responsible for hyperacuity-

level performance is synthesized in a demand-driven fashion, when the task is first performed

by the subject.

More generally, one may apply the same line of reasoning to other visual tasks studied by

psychophysicists. To this effect, it is important that the technique we have used for learning can

be implemented as a simple biologically plausible network [19]. Furthermore, this approach has

recently been demonstrated as effective in modeling central aspects of human performance in

three-dimensional object recognition [17.6]. It remains to be seen whether the above framework

12



Before: err=-0.060 n + 1.054;
After: err=-0.015 n + 0.640;
Overall: err=-0.009 n + 0.664.

,10 20 d1ok No.

Figure 10:. Replication of the gradual improvement in vernier acuity with practice by the

random search technique described in section 2.4. The best linear fit to the data set has a

slope of -0.009. In other words, the HyperBF module exhibited continuous learning, just as

the human subjects did.

would prove useful in unifying the existing diverse theoretical approaches to the modeling of

visual perception, and of brain function in general.

Appendix: Learning modes of the HyperBF scheme

Incremental learning and bootstrapping in the absence of feedback

The HyperBF module must be allowed to improve its performance throughout the testing stage,

with and without feedback. This can be achieved by using the algorithm that we described in the

body of the paper: centers are added when the model performance is inadequate. Coefficients

are modified and - possibly on a slower time scale - centers are moved. Performance is easily

measured in the presence of feedback, in terms of the error between the predicted value and the

correct one. If no feedback is available, it is still possible to estimate performance if the new

input is not too far away from the existing centers, so that the network can classify it correctly,

13



Different scales -Pp- Isomorphic activities

Figure 11: Scale invariance in hyperacuity tasks can be achieved in principle through simultane-

ous processing of the input at several levels of resolution, corresponding to several overlapping

grids of "ganglion" cells of different size and spacing.

even if not very reliably. Thus, a small modification of the scheme makes it to work in the

absence of feedback, under certain conditions. Imagine that a few examples of the hyperacuity

task are given with feedback, that is with the correct classification. Subsequently, new stimuli

are given without feedback. If these stimuli are sufficiently similar to the original examples, the

network may be able to classify them correctly and then incorporate them as new centers (i.e.,

templates), effectively bootstrapping the learning process.

Notice that such incremental learning tasks are not uncommon. In particular, hyperacuity is

often tested within the paradigm of adapting the size of the offset to the subject's performance,

therefore decreasing it slowly during the test. Under these conditions, the offset in each trial is

never less than half the offset of the previous trial. According to our simulations, the network

described earlier can generalize rather well to offsets of half the size (but not to offsets of say,

four times the training size). The incremental learning algorithm described in the main text

may be extended in the following way. In the absence of feedback the network attempts to

0
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classify a new stimulus and to use it as an example for incremental learning, provided that the

classification is sufficiently reliable (that is, provided there is at least one unit in the network

which is sufficiently active, indicating that the new stimulus is sufficiently close to one of the

existing centers).

Learning algorithms: details

The basic mechanism of learning in HyperBF networks is the computation of the optimal set

of coefficients c, which relate the network's output vector to the vector whose components are

the activities of the individual basis function units. Finding the matrix of coefficients amounts

to the solution of a linear system, provided that the number of input/output examples is the

same as the number of basis functions. If there are more examples than basis functions, the

resulting overconstrained system can be solved by pseudoinverse methods. A one-shot method

of this type does not appear to be biologically plausible. However, an equivalent result may be

achieved, for the case of c, by gradient descent that can be implemented through a Hebbian

mechanism (see [18]).

In the overconstrained case repositioning the HyperBF centers t, through gradient descent

can also improve the module's performance (see also section 2.4). To cite a concrete example, we

have trained a 20-center network with 50 vernier examples, achieving mean error of 0.67 ± 0.07.

After 20 steps of gradient descent, the error dropped to 0.045 ± 0.006.

In a more realistic situation, the HyperBF module should be allowed to improve its per-

formance not only during specially designated training trials, but also throughout the testing

stage as it is the case for our incremental learning algorithm described in the main text. Our

simulation is based on a random search method described in section 2.4, and on augmenting

the HyperBF module with a Widrow-Hoff learning mechanism (see [25]), in which the coeffi-

cients c, are modified according to the following formula:

c' + 1 =et (ftit ) h t

where ft and i are the correct and the estimated output values at trial t, and ht is the vector

of intermediate-layer values (which are the activities of the basis units). In other words, the co-

efficients c, are modified by an amount proportional to the error made in the current trial. It

has been shown [25,11] that the Widrow-Hoff mechanism is equivalent to an incremental com-

putation of the appropriate pseudoinverse. In our simulations. mean error typically improved

by 0.004 per trial for about 100 trials (as found by a linear regression of error on trial number),

then became constant.2

2 These figures varied with the coefficient -r of the Widrow-Hoff equation.
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